A Well–Balanced Stable GRP Scheme for Shallow Water Equations for Adaptive Unstructured Triangular Meshes
نویسندگان
چکیده
منابع مشابه
Balanced Central Schemes for the Shallow Water Equations on Unstructured Grids
We present a two-dimensional, well-balanced, central-upwind scheme for approximating solutions of the shallow water equations in the presence of a stationary bottom topography on triangular meshes. Our starting point is the recent central scheme of Kurganov and Petrova (KP) for approximating solutions of conservation laws on triangular meshes. In order to extend this scheme from systems of cons...
متن کاملPositivity-Preserving Well-Balanced Discontinuous Galerkin Methods for the Shallow Water Equations on Unstructured Triangular Meshes
The shallow water equations model flows in rivers and coastal areas and have wide applications in ocean, hydraulic engineering, and atmospheric modeling. In [36], the authors constructed high order discontinuous Galerkin methods for the shallow water equations which can maintain the still water steady state exactly, and at the same time can preserve the nonnegativity of the water height without...
متن کاملAn entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry
We design an arbitrary high order accurate nodal discontinuous Galerkin spectral element approximation for the nonlinear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from a skew-symmetric formulation of the continuous problem. We prove that this discretisation exactly p...
متن کاملCell-vertex discretization of shallow water equations on mixed unstructured meshes
Finite-volume discretizations can be formulated on unstructured meshes composed of different polygons. A staggered cell-vertex finite-volume discretization of shallow water equations is analyzed on mixed meshes composed of triangles and quads. Although triangular meshes are most flexible geometrically, quads are more efficient numerically and do not support spurious inertial modes of triangular...
متن کاملAdaptive Finite Volume Method for the Shallow Water Equations on Triangular Grids
This paper presents a numerical entropy production (NEP) scheme for two-dimensional shallow water equations on unstructured triangular grids. We implement NEP as the error indicator for adaptive mesh refinement or coarsening in solving the shallow water equations using a finite volumemethod. Numerical simulations show thatNEP is successful to be a refinement/coarsening indicator in the adaptive...
متن کامل